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Abstract

We will discuss how the theory of vector bundles in topology
influenced developments in algebra, and the correspondences
between the classical theory in topology and the newly
developed theory in algebra.
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Rings

◮ A ring A is a set with an addition (+) and a
multiplication. It is a commutative group under addition
+, and the multiplication is distributive with respect to +.

◮ Any field is a ring. So, R, C are rings.

◮ Let M be a topological space. Let C (M) denote the set
of all continuous real valued functions. Then C (M) is a
ring. This may be the most inspiring example of a ring.
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Modules

◮ A module M over a ring A is what a vector space would
be over a field.

◮ A free module F over a ring A is an A−module that has a
basis. If F is a finitely generated free A−module, then
F ≈ An. In this case, rank(F ) := n.
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Projective Modules

◮ Suppose A is a commutative ring.

◮ An A−module P is said to be projective, if

P ⊕ Q = Free

for some other A−module Q.
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Projective Modules

Examples:
◮ A free A−module is a projective A−module.
◮

Let An =
R[X0, . . . , Xn]

(X 2
0 + · · ·+ X 2

n − 1)
= R[x0, x1, . . . , xn]

be the algebraic coordinate ring of the real n−sphere. Let
Tn be defined by the exact sequence

0 // Tn
// An+1

n

(x0,...,xn)
// An

// 0.

Then Tn is a projective An−module. It ”corresponds” to
the tangent bundle.
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Projective Modules

Examples:

◮ Now suppose, M is a smooth (compact) manifold. Let T
be the tangent bundle on M . Let T be the set of all
vector fields. Then T is a projective C (M)−module.

◮ It is known that the tangent bundles over even
dimensional spheres S

n are not trivial. So, the projective
C (Sn)−module T is not free. (The last slide proves it.)

◮ Next, we define vector bundles.
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Vector bundles

Suppose M is a topological space. A (real) vector bundle on
M , is a continuous map p : E → M such that

◮ Each fiber Ex = p−1(x) has a vector space structure.
◮ M has an open cover {Ui} and homeomorphisms

(trivializations) ϕi such that the diagrams

p−1(Ui)
ϕi

∼
//

p
##GG

GG
GG

GG
G

Ui × R
r

{{wwwwwwwww

Ui

commute.

◮ For each x ∈ Ui , the trivialization ϕi induces linear
isomorphisms Ex → R

r .
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Vector bundles

◮ The rank of E is defined as rank(E) = r .

◮ Example: M × R
r → M is the trivial bundle on M , to be

denoted by Rr .

◮ Example: The tangent bundle T over a manifold M , is a
vector bundle.
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The Module of Sections

Let

Γ(E) := {s : M → E : ps = IdM , s is continuous} .

This means s(x) ∈ Ex ∀x ∈ M .

1. Elements s ∈ Γ(E) are called sections of E .

2. Example: vector fields are sections of the tangent bundle.

3. Γ(E) has a natural C (M)−module structure.
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Correspondence

Theorem ([Swan 1962])
Suppose M is a (compact connected) Hausdorff topological
space. Then the association

E → Γ(E)

is an equivalence of catagories, from the category V(M) of
vector bundles over M to the category P(C (M)) of finitely
generated projective C (M)−modules.
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Correspondence

◮ Because of this correspondence, there is a lot in common
between research on vector bundles in topology and that
on projective modules in algebra.

◮ The ring C (M) is too big. We work with the ring of
algebraic functions.

◮ I will often talk about ”noetherian commutative rings,”
because the ring of algebraic functions over a space M is
”notherian and commutative”.

◮ More often than not, research on vector bundles led the
way for research on projective modules.
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Never-Vanishing sections

◮ Let M be a real manifold with dim M = d .

◮ Let E be a vector bundle of rank r .

◮ If r > d , then E has a never-vanishing section.

◮ Therefore,

E ≈ E0 ⊕R
r−d with rank(E0) = d

where R = M × R is the trivial bundle of rank one.
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Splitting

The above inspired the theorem of Serre ([Serre1957]):

◮ Let A be a noetherian commutative ring with dim A = d .

◮ Let P be a projective A−module of rank r .

◮ If r > d , then P has a free direct summand.

◮ Therefore,

P ≈ P0 ⊕ Ar−d with rank(P0) = d .
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Polynomial rings

◮ R
n is contractible. So, vector bundles over R

n are trivial.

◮ So, J.-P. Serre conjectured ([Serre1955]) the same for
polynomial rings.

◮ Independently, Quillen and Suslin proved the conjecture:
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Polynomial rings

Theorem ([Quillen1976], [Suslin1976])
Let A = k[X1, . . . , Xn] be a polynomial ring over a field k .
Then, finitely generated projective A−modules P are free.
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Topological Obstructions

◮ In topology, there is a classical Obstruction theory (see
[Steenrod1951]).

◮ Suppose M is a real smooth manifold with
dim M = d ≥ 2 and L is a line bundle over M . Then,
there are obstruction groups

Hn(M ,L) ≈ Hn(M ,L∗) 0 ≤ n ≤ d .

◮ If L is trivial (the orientable case), these groups turn out
to be the singular cohomology groups Hn(M , Z). In the
non-orientable case, they are the cohomology group
Hn(M ,GL), with local coefficients in a bundle of groups.
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Topological Obstructions

◮ For a vector bundle E on M with rank r ≤ d , there is an
invariant

w(E) ∈ Hr (M ,∧rE) .

◮ If E has a never-vanishing section, then w(E) = 0.

◮ For rank r = d , conversely,

w(E) = 0 =⇒ E = F ⊕R.
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Algebraic Obstructions

Obstruction theory in algebra is a more recent development,
first outlined by M. V. Nori.

◮ Suppose A is a noetherian commutative ring with
dim A = d ≥ 2 and L is a rank one projective A−module.

◮ Then, there is an obstruction group E d(A, L).

◮ ([BhatSri]) Given a projective A−module P of rank d ,
there is an obstruction class

e(P) ∈ E
(

A,∧dP
)

such that

e(P) = 0⇐⇒ P = Q ⊕ A.
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Algebra and topology

Let A = R[X1,X2,...,Xn]
I

= R[x1, x2, . . . , xn], where I is an ideal of
the polynomial ring R[X1, X2, . . . , Xn]. Let M be the set of
points v ∈ R

n such that f (v) = 0 for all f ∈ I .

◮ There are two types of maximal ideals m of A. If
A/m ≈ C then m is called a complex maximal ideal (or
point).

Satya Mandal Faculty Seminar, Mathematics, KU Topology in Algebra



Abstract
Background

Obstruction theory
Latest

Definitions
The Homomorphism

An application

In topology
In algebra
Algebra and topology

Algebra and topology

◮ If R
∼
→ A/m, then m is called a real maximal ideal (or

point). In this case, m = (x1 − a1, x2 − a2, . . . , xn − an).

m←→ (a1, . . . , an) ∈ M is an 1− 1 correspondence

between real maximal ideals of A and the points in M .

◮ If A is smooth, then M ⊆ R
n is a smooth maifold.

Also dim M = dim A. (Implicit function theorem.)
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Algebra and topology

Theorem (Mandal and Sheu): Let A = R[x1, x2, . . . , xn] be a
smooth algebra over R and let M ⊆ R

n be the real manifold,
as above. Let dim A = dim M = d ≥ 2 and L be a rank one
projective A−module and L be the corresponding line bundle
over M .

◮ Then, there is a canonical homomorphism

ǫ : E (A, L)→ Hd (M ,L∗) .

◮ For a projective A−module P of rank d , we have

ǫ(e(P)) = w(E∗) where E is the vector bundle

on M with the module of sections = P ⊗ C (M).
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◮ The homomorphism ǫ, factors through an isomorphism

E (S−1A, S−1L)
∼
→ Hd (M ,L∗) where S is

the set of functions f ∈ A never vanishing on M .

◮ Remark: In S−1A, all the complex maximal ideals of A
are killed. So, as sets Max(S−1A) = M .
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More Groups

1. (With Yong Yang) We were able to define

E r(A, L) for 0 ≤ r ≤ d , with a

multiplicative structure on ⊕d
r=0 E r(A, A).

2. For a projective A−module P of rank r we were able to
define an obstruction homomorphism:

w(P) : E d−r(A, L)→ E d(A, L⊗ (∧rP)).

3. (Question) How to define a cannonical homomorphism

E r (A, L)→ Hr (M ,L∗)?
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Definitions

◮ Let A = R[x1, x2, . . . , xn] be a smooth algebra and
dim A = d ≥ 2. Let L be a rank one projective
A−module.

◮ We will give a definition of the Euler class group E d(A, L).

◮ Let G(L) be the free abelian group generated by the set
of pairs (m, ω), where m runs through all maximal ideals
of A and ω : L/mL

∼
→ ∧dm/m2 is an isomorphism.
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Definitions

◮ Let I = m1 ∩ · · · ∩mr be an intersection of finitely many
maximum ideals.

◮ An isomorphism ωI : L/IL
∼
→ ∧d I/I 2 is called a local

L−orientation on I .

◮ Such a local orientation is called a Global L−orientation,
if it is induced by a surjective homomorphism

Ω : L⊕ Ad−1
։ I .
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Definitions

◮ As above I = m1 ∩ · · · ∩mr , ωI : L/IL
∼
→ ∧d I/I 2. Then

ωI induces local orientations ωi : L/miL
∼
→ ∧dmi/m

2
i .

◮ To such local orientations ωI we associate

(I , ωI ) :=
∑

(mi , ωi) ∈ G(L).

◮ Let R(L) be the subgroup of G(L) generated by (I , ωI ),
such that ωI is global.

◮

Define E d(A, L) =
G(L)

R(L)
.
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Orientable case

◮ Let A = R[x1, x2, . . . , xn] be oriented smooth algebra
over R. Then the manifold M is orientable. We assume
dim A = dim M = d ≥ 2.

◮ Let C1, . . . , Cr be the compact connected components of
M . Then, the topological obstruction group
Hd (M ,R) = Hd (M , Z) = ⊕r

i=1H
d(Ci) = Z

r .

◮ We will define a homomorphism ǫ0 : G(A)→ Hd (M , Z)

and check that it factors through E d(A, A) = G(A)
R(A)

.
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Orientable case

◮ Suppose (m, ω) is a generator of G(A), where m is a
maximal ideal of A and ω : A/m

∼
→ ∧dm/m2.

◮ If m is a complex maximal ideal, define ǫ0(m, ω) = 0.

◮ Let m be a real maximal ideal and v ∈ M be the
corresponding real point. If
v ∈ M \ ∪Ci , define ǫ0(m, ω) = 0.
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Orientable case

◮ Suppose v ∈ Ci . Then ω : A/m
∼
→ ∧dm/m2 is given by a

generator f̄1 ∧ f̄2 ∧ · · · ∧ f̄d of ∧dm/m2, where
f1, . . . , fd ∈ A and (f1, . . . , fd) has an isolated zero at v .
Define ǫ0(m, ω) =

index(f1, . . . , fd) ∈ Z = Hd (Ci , Z) ⊆ Hd (M , Z) .

◮ Remark: The index is well defined because M is
orientable.

Satya Mandal Faculty Seminar, Mathematics, KU Topology in Algebra



Abstract
Background

Obstruction theory
Latest

Definitions
The Homomorphism

An application

The set-up
The assignment
Q.E.D.
Non-Orientable Case

Orientable case

◮ Above associations defines a homomorphism
ǫ0 : G(A)→ Hn(M , Z).

◮ Suppose I = m1 ∩ · · · ∩mr is an intersection of (real)
maximal ideals and ωI is a global orientation. Then,
ǫ0(I , ωI ) is the topological Euler class of the trivial bundle
of rank d . So, ǫ0(I , ωI ) = 0.

◮ So, ǫ0 factors through a homomorphism

ǫ : E d(A, A) =
G(A)

R(A)
→ Hd (M , Z) .
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Non-Orientable case

The definition of the homomorphism is similar in the
non-orientable case. The index is defined only ”modulo 2”.
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On the real Sphere S
n

◮ As before, let

An =
R[X0, . . . , Xn]

(X 2
0 + · · ·+ X 2

n − 1)
= R[x0, x1, . . . , xn]

be the algebraic coordinate ring of S
n with n ≥ 2.

◮ All rank one projective An−modules are free. So, there is
only one group E (An, An).

◮ We have E n(An, An) = Z.
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On the real Sphere S
n

◮ As before let Tn be defined by the exact sequence

0 // Tn
// An+1

n

(x0,...,xn)
// An

// 0.

◮ If n is odd, then e(Tn) = 0.

◮ If n is even, then e(Tn) = ±2. This is a fully algebraic
proof that Tn does not have a free direct summand. This
result corresponds to the topological result that the
tangent bundle on an even dimensional sphere, does not
have a no-where vanishing section.
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